Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.546
Filtrar
1.
BMC Med Imaging ; 24(1): 94, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649862

RESUMO

BACKGROUND: Large field of view CZT SPECT cameras with a ring geometry are available for some years now. Thanks to their good sensitivity and high temporal resolution, general dynamic SPECT imaging may be performed more easily, without resorting to dedicated systems. To evaluate the dynamic SPECT imaging by such cameras, we have performed an in vivo pilot study to analyze the kidney function of a pig and compare the results to standard dynamic planar imaging by a conventional gamma camera. METHODS: A 7-week-old (12 kg) female Landrace pig was injected with [99mTc]Tc-MAG3 and a 30 min dynamic SPECT acquisition of the kidneys was performed on a CZT ring camera. A fast SPECT/CT was acquired with the same camera immediately after the dynamic SPECT, without moving the pig, and used for attenuation correction and drawing regions of interest. The next day the same pig underwent a dynamic planar imaging of the kidneys by a conventional 2-head gamma camera. The dynamic SPECT acquisition was reconstructed using a MLEM algorithm with up to 20 iterations, with and without attenuation correction. Time-activity curves of the total counts of each kidney were extracted from 2D and 3D dynamic images. An adapted 2-compartment model was derived to fit the data points and extract physiological parameters. Comparison of these parameters was performed between the different reconstructions and acquisitions. RESULTS: Time-activity curves were nicely fitted with the 2-compartment model taking into account the anesthesia and bladder filling. Kidney physiological parameters were found in agreement with literature values. Good agreement of these parameters was obtained for the right kidney between dynamic SPECT and planar imaging. Regional analysis of the kidneys can be performed in the case of the dynamic SPECT imaging and provided good agreement with the whole kidney results. CONCLUSIONS: Dynamic SPECT imaging is feasible with CZT swiveling-detector ring cameras and provides results in agreement with dynamic planar imaging by conventional gamma cameras. Regional analysis of organs uptake and clearance becomes possible. Further studies are required regarding the optimization of acquisition and reconstruction parameters to improve image quality and enable absolute quantification.


Assuntos
Câmaras gama , Rim , Telúrio , Tomografia Computadorizada de Emissão de Fóton Único , Zinco , Animais , Projetos Piloto , Rim/diagnóstico por imagem , Feminino , Suínos , Tomografia Computadorizada de Emissão de Fóton Único/instrumentação , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Cádmio , Tecnécio Tc 99m Mertiatida , Algoritmos , Compostos Radiofarmacêuticos
2.
Anal Chim Acta ; 1304: 342579, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38637044

RESUMO

Plasmon enhanced fluorescent (PEF) with more "hot spots" play a critical role in signal amplified technology to avoid the intrinsic limitation of fluorophore which ascribed to a strong electromagnetic field at the tip structure. However, application of PEF technique to obtain a highly sensitive analysis of medicine was still at a very early stage. Herein, a simple but versatile Ag nanocubes (Agcubes)-based PEF sensor combined with aptamer (Agcubes@SiO2-QDs-Apt) was proposed for highly sensitive detection of berberine hydrochloride (BH). The distance between the plasma Agcubes and the red-emitted CdTe quantum dots (QDs) were regulated by the thickness of silica spacer. The three-dimensional finite-difference time-domain (3D-FDTD) simulation further revealed that Agcubes have a higher electromagnetic field than Ag nanospheres. Compared with PEF sensor, signal QDs-modified aptamer without Agcubes (QDs-Apt) showed a 10-fold higher detection limit. The linear range and detection limit of the Agcubes@SiO2-QDs-Apt were 0.1-100 µM, 87.3 nM, respectively. Furthermore, the PEF sensor was applied to analysis BH in the berberine hydrochloride tablets, compound berberine tablet and urine with good recoveries of 98.25-102.05%. These results demonstrated that the prepared PEF sensor has great potential for drug quality control and clinical analysis.


Assuntos
Aptâmeros de Nucleotídeos , Berberina , Compostos de Cádmio , Pontos Quânticos , Fluorescência , Pontos Quânticos/química , Compostos de Cádmio/química , Dióxido de Silício , Telúrio/química , Espectrometria de Fluorescência/métodos , Aptâmeros de Nucleotídeos/química , Limite de Detecção
3.
J Hazard Mater ; 470: 134218, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581878

RESUMO

The development of high-performance sensors for doxycycline (DOX) detection is necessary because its residue accumulation will cause serious harm to human health and the environment. Here, a novel tri-emission ratiometric fluorescence sensor was proposed by using "post-mixing" strategy of different emissions fluorescence molecularly imprinted polymers with salicylamide as dummy template (DMIPs). BSA was chosen as assistant functional monomer, and also acted as sensitizers for the aggregation-induced emission (AIE) effect of DOX. The blue-emitting carbon dots and the red-emitting CdTe quantum dots were separately introduced into DMIPs as the response signals. Upon DOX recognition within 2 min, blue and red fluorescence of the tri-emission DMIPs sensor were quenched while green fluorescence of DOX was enhanced, resulting in a wide range of color variations observed over bluish violet-rosered-light pink-orange-yellow-green with a detection limit of 0.061 µM. The sensor possessed highly selective recognition and was successfully applied to detect DOX in complicated real samples. Moreover, with the fluorescent color collection and data processing, the smartphone-assisted visual detection of the sensors showed satisfied sensitivity with low detection limit. This work provides great potential applications for rapid and visual detection of antibiotics in complex substrates.


Assuntos
Antibacterianos , Compostos de Cádmio , Doxiciclina , Impressão Molecular , Pontos Quânticos , Espectrometria de Fluorescência , Telúrio , Doxiciclina/análise , Doxiciclina/química , Pontos Quânticos/química , Telúrio/química , Antibacterianos/análise , Compostos de Cádmio/química , Limite de Detecção , Fluorescência , Carbono/química , Corantes Fluorescentes/química , Polímeros Molecularmente Impressos/química , Smartphone
4.
J Cardiothorac Surg ; 19(1): 188, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589945

RESUMO

Pulmonary embolism is the most common cardiovascular disease after myocardial infarction and stroke. Konstantinides (Eur Heart J 41(4):543-603, 2020) Current guidelines categorize patients with PE as being at low, intermediate, and high risk of early death, with the intermediate-risk group experiencing the greatest uncertainty regarding treatment recommendations. Rapid reduction of the thrombus load by thrombolysis significantly reduces symptoms and decreases mortality, but is accompanied by a high risk of bleeding. Meyer (N Engl J Med 370(15):1402-11, 2014) Mechanical thrombectomy (CDTE) have been proven safe and efficient, yet current ESC guidelines suggest the utilization of catheter interventions only for hypotensive patients with high bleeding risk, failed systemic thrombolysis, and cardiogenic shock or if a patient does not respond to conservative therapy Konstantinides (Eur Heart J 41(4):543-603, 2020). Here, we report a case of an intermediate-risk patient with pulmonary embolism who underwent thrombus aspiration and showed significant improvement in symptoms after treatment.


Assuntos
Compostos de Cádmio , Embolia Pulmonar , Pontos Quânticos , Trombose , Humanos , Trombectomia , Resultado do Tratamento , Telúrio , Embolia Pulmonar/terapia , Hemorragia , Terapia Trombolítica
5.
Mikrochim Acta ; 191(5): 249, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587558

RESUMO

17ß-Estradiol (E2) is the typical endocrine disruptor of steroidal estrogens and is widely used in animal husbandry and dairy processing. In the environment, even lower concentrations of E2 can cause endocrine dysfunction in organisms. Herein, we have developed a novel molecularly imprinted ratiometric fluorescent sensor based on SiO2-coated CdTe quantum dots (CdTe@SiO2) and 7-hydroxycoumarin with a post-imprint mixing strategy. The sensor selectively detected E2 in aqueous environments due to its two fluorescent signals with a self-correction function. The sensor has been successfully used for spiking a wide range of real water and milk samples. The results showed that the sensor exhibited good linearity over the concentration range 0.011-50 µg/L, obtaining satisfactory recoveries of 92.4-110.6% with precisions (RSD) < 2.5%. Moreover, this sensor obtained an ultra-low detection limit of 3.3 ng/L and a higher imprinting factor of 13.66. By using estriol (E3), as a supporting model, it was confirmed that a simple and economical ratiometric fluorescent construction strategy was provided for other hydrophobic substances.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Animais , Leite , Fluorescência , Dióxido de Silício , Telúrio , Estradiol , Corantes
6.
J Radiol Prot ; 44(2)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38530296

RESUMO

Calibration of 22 gamma camera units was performed at 15 hospitals in southern and western Sweden to estimate137Cs contamination in humans in a supine static geometry, with a new developed calibration protocol and phantom. The minimum detectable activities (MDAs) and the estimated committed effective doses (CEDs) were calculated for each calibration. Generic calibration factors were calculated for five predetermined groups based on the detector type and manufacturer. Group 1 and 2 included NaI-based gamma cameras from General Electrics (GEs) with a crystal thickness of 5/8'' and 3/8'' respectively. Group 3 and 4 included NaI-based gamma cameras from Siemens Healthineers with a crystal thickness of 3/8'', with a similar energy window as the GE NaI-based cameras and a dual window respectively. Group 5 included semiconductor-based gamma cameras from GE with a CdZnTe (CZT) detector. The generic calibration factors were 60.0 cps kBq-1, 52.3 cps kBq-1, 50.3 cps kBq-1, 53.2 cps kBq-1and 48.4 cps kBq-1for group 1, 2, 3, 4, and 5 respectively. The MDAs ranged between 169 and 1130 Bq for all groups, with measurement times of 1-10 min, corresponding to a CED of 4.77-77.6µSv. A dead time analysis was performed for group 1 and suggested a dead time of 3.17µs for137Cs measurements. The dead time analysis showed that a maximum count rate of 232 kcps could be measured in the calibration geometry, corresponding to a CED of 108-263 mSv. It has been shown that semiconductor-based gamma cameras with CZT detectors are feasible for estimating137Cs contamination. The generic calibration factors derived in this study can be used for gamma cameras of the same models in other hospitals, for measurements in the same measurement geometry. This will increase the measurement capability for estimating internal137Cs contamination in the recovery phase following radiological or nuclear events.


Assuntos
Cádmio , Radioisótopos de Césio , Câmaras gama , Telúrio , Zinco , Humanos , Calibragem
7.
Phys Med Biol ; 69(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38471186

RESUMO

Following the rapid, but independent, diffusion of x-ray spectral and phase-contrast systems, this work demonstrates the first combination of spectral and phase-contrast computed tomography (CT) obtained by using the edge-illumination technique and a CdTe small-pixel (62µm) spectral detector. A theoretical model is introduced, starting from a standard attenuation-based spectral decomposition and leading to spectral phase-contrast material decomposition. Each step of the model is followed by quantification of accuracy and sensitivity on experimental data of a test phantom containing different solutions with known concentrations. An example of a micro CT application (20µm voxel size) on an iodine-perfusedex vivomurine model is reported. The work demonstrates that spectral-phase contrast combines the advantages of spectral imaging, i.e. high-Zmaterial discrimination capability, and phase-contrast imaging, i.e. soft tissue sensitivity, yielding simultaneously mass density maps of water, calcium, and iodine with an accuracy of 1.1%, 3.5%, and 1.9% (root mean square errors), respectively. Results also show a 9-fold increase in the signal-to-noise ratio of the water channel when compared to standard spectral decomposition. The application to the murine model revealed the potential of the technique in the simultaneous 3D visualization of soft tissue, bone, and vasculature. While being implemented by using a broad spectrum (pink beam) at a synchrotron radiation facility (Elettra, Trieste, Italy), the proposed experimental setup can be readily translated to compact laboratory systems including conventional x-ray tubes.


Assuntos
Compostos de Cádmio , Iodo , Pontos Quânticos , Camundongos , Animais , Iluminação , Fótons , Telúrio , Tomografia Computadorizada por Raios X/métodos , Imagens de Fantasmas
8.
Mikrochim Acta ; 191(4): 216, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517549

RESUMO

A photoelectrochemical (PEC) sensor for the sensitive detection of thrombin (TB) was established. Co-sensitized combination of TiO2 nanoparticles combined with modified cadmium sulfide and cadmium telluride quantum dots (CdS/CdTe QDs) was utilized as a photoactive material. Successful growth of CdS/CdTe quantum dots on mesoporous TiO2 films occured by successive ion-layer adsorption and reaction. This interesting formation of co-sensitive structure is conducive to enhancing the photocurrent response by improving the use rate of light energy. Additionally, the step-level structure of CdS/CdTe QDs and TiO2 NPs shows a wide range of visible light absorption, facilitating the dissociation of excitons into free electrons and holes. Consequently, the photoelectric response of the PEC analysis platform is significantly enhanced. This constructed PEC aptasensor shows good detection of thrombin with a low detection limit (0.033 pM) and a wide linear range (0.0001-100 nM) in diluted actual human serum samples. In addition, this PEC aptasensor also has the characteristics of good stability and good reproducibility, which provides a novel insight for the quantitative measurement of other similar analytes.


Assuntos
Compostos de Cádmio , Nanopartículas , Pontos Quânticos , Humanos , Pontos Quânticos/química , Compostos de Cádmio/química , Telúrio/química , Trombina , Reprodutibilidade dos Testes , Técnicas Eletroquímicas , Nanopartículas/química
9.
Asian Pac J Cancer Prev ; 25(3): 747-756, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38546057

RESUMO

QDs are semiconductor nanocrystalline materials with distinct optical and electronic characteristics due to their microscopic size and quantum mechanical properties. They are often composed of materials such as cadmium selenide (CdSe), cadmium telluride (CdTe), or indium phosphide (InP) and are typically in the size range of 2 to 10 nanometers in diameter. These tiny particles are used in various scientific and technological applications. Some key characteristics and applications of quantum dots are size-dependent Optical Properties with tunable emission. The color of light emitted by quantum dots highly depends on their size. Smaller QDs emit blue or green light, while larger ones emit red or near-infrared light. This tunability makes them valuable in various applications, especially in molecular medicine and oncology research. Quantum dots can exhibit a high quantum yield, meaning they efficiently emit light when excited, making them excellent fluorescent probes for non-invasive imaging. This review discusses the applications of QDs and their role in biomedical research and patient care, focusing on non-invasive imaging and preventive oncology.


Assuntos
Compostos de Cádmio , Nanopartículas , Pontos Quânticos , Humanos , Pontos Quânticos/química , Compostos de Cádmio/química , Telúrio , Nanopartículas/química
11.
ACS Appl Mater Interfaces ; 16(12): 14510-14519, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38488618

RESUMO

Interferon-γ (IFN-γ) release assays (IGRAs) are constrained by the limited diagnostic performance of a single indicator and the excessive Mycobacterium tuberculosis (Mtb) antigen stimulation time. This study presents a simultaneous, homogeneous, rapid, and ultrasensitive fluorescence quantification strategy for IFN-γ and IFN-γ-induced protein 10 (IP-10). This method relies on the high-affinity binding of aptamers to IFN-γ and IP-10, the enzyme-free catalytic hairpin assembly reaction, and the heightened sensitivity of CdTe quantum dots to Ag+ and hairpin structure C-Ag+-C and carbon dots to Hg2+ and hairpin structure T-Hg2+-T. Under optimized conditions, the selectivity of IFN-γ and IP-10 was excellent, with a linear range spanning from 1 to 100 ag/mL and low limits of detection of 0.3 and 0.5 ag/mL, respectively. Clinical practicality was confirmed through testing of 57 clinical samples. The dual-indicator combination detection showed 92.8% specificity and 93.1% sensitivity, with an area under the curve of 0.899, representing an improvement over the single-indicator approach. The Mtb antigen stimulation time was reduced to 8 h for 6/7 clinical samples. These findings underscore the potential of our approach to enhance the efficiency and performance of a tuberculosis (TB) clinical diagnosis.


Assuntos
Compostos de Cádmio , Mercúrio , Mycobacterium tuberculosis , Ácidos Nucleicos , Pontos Quânticos , Tuberculose , Humanos , Quimiocina CXCL10 , Ensaio de Imunoadsorção Enzimática/métodos , Telúrio , Tuberculose/diagnóstico , Interferon gama/metabolismo , Antígenos
12.
Ann Nucl Med ; 38(5): 350-359, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38347280

RESUMO

PURPOSE: Radiolabeled graphene oxide (GO) nanosheets has been one of the most extensively studied nanoplatform for in vivo radioisotope delivery. Herein, we describe the functionalization of the surface of GO nanosheets with Fe3O4 magnetic nanoparticles, cysteine amino acid as an interface ligand, and cadmium telluride quantum dots. MATERIALS AND METHODS: To enable In vivo PET imaging, the GO@Fe3O4-cys-CdTe QDs were labeled with 68Ga to yield [68Ga] Ga-Go@ Fe3O4-Cys-CdTe QDs. Furthermore, serum stability tests were performed and the biological behavior of the nanocomposite was evaluated in rats bearing fibrosarcoma tumor. RESULTS: Liver, blood and tumor were the most accumulated sites at 1 h after the injection, and the radiolabeled nanocomposite as a PET/MRI imaging agent showed fast depletion from body and acceptable tumor uptake. CONCLUSION: Magnetic (Fe3O4) and fluorescent components (CdTe QDs) along with a positron-emitting radionuclide will help to design a multimodal imaging system (PET/MRI/OI) which will offer the advantages of combined imaging techniques and further possible used in localized radionuclide therapy. Overall, [68Ga] Ga-GO@Fe3O4-cys-CdTe QDs nanocomposite shows great promise as a radiolabeled imaging agent owing to high accumulation in tumor region.


Assuntos
Compostos de Cádmio , Fibrossarcoma , Grafite , Pontos Quânticos , Ratos , Animais , Compostos de Cádmio/química , Distribuição Tecidual , Radioisótopos de Gálio/química , Pontos Quânticos/química , Telúrio/química , Tomografia por Emissão de Pósitrons , Radioisótopos , Fibrossarcoma/diagnóstico por imagem , Imagem Multimodal , Imageamento por Ressonância Magnética
13.
J Nucl Cardiol ; 34: 101825, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387736

RESUMO

BACKGROUND: It is clinically needed to explore a more efficient imaging protocol for single photon emission computed tomography (SPECT) myocardial blood flow (MBF) quantitation derived from cadmium zinc telluride (CZT) SPECT camera for the routine clinical utilization. METHODS: One hundred and twenty patients with matched clinical characteristics and angiographic findings who completed one-day rest/stress SPECT imaging with either the intermittently sequential imaging (ISI) protocol (two dynamic and two electrocardiography (ECG)-gated scans) or the continuous rapid imaging (CRI) protocol (two dynamic/ECG-gated scans) were included. MBF quantitation adopted residual activity correction (RAC) to correct for rest residual activity (RRA) in the stress dynamic SPECT scan for the detection of flow-limited coronary artery disease. RESULTS: The CRI protocol reduced about 6.2 times shorter than the ISI protocol (25.5 min vs 157.6 min), but slightly higher than the RRA (26.7% ± 3.6% vs 22.3% ± 4.9%). With RAC, both protocols demonstrated close stress MBF (2.18 ± 1.13 vs 2.05 ± 1.10, P > 0.05) and myocardial flow reserve (MFR) (2.42 ± 1.05 vs 2.48 ± 1.11, P > 0.05) to deliver comparable diagnostic performance (sensitivity = 82.1%-92.3%, specificity = 81.2%-91.2%). Myocardial perfusion and left ventricular function overall showed no significant difference (all P > 0.26). CONCLUSION: One-day rest/stress SPECT with the CRI protocol and rest RAC is feasible to warrant the diagnostic performance of MBF quantitation with a shortened examination time and enhanced patient comfort. Further evaluation on the impact of extracardiac activity to regional MBF and perfusion pattern is required. Additional evaluation is needed in a patient population that is typical of those referred for SPECT MPI, including those with known or suspected coronary microvascular disease.


Assuntos
Doença da Artéria Coronariana , Reserva Fracionada de Fluxo Miocárdico , Imagem de Perfusão do Miocárdio , Humanos , Doença da Artéria Coronariana/diagnóstico por imagem , Cádmio , Estudos de Viabilidade , Imagem de Perfusão do Miocárdio/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Telúrio , Zinco
14.
Food Chem ; 446: 138791, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38422638

RESUMO

Acid-sensitive CdTe quantum dots-loaded alginate hydrogel (CdTe QDs-AH) beads were designed for the visual detection of SO2 residues. As proof of concept, two types of CdTe QDs were selected as model probes and embedded in AH beads. The entire test was performed within 25 min in a modified double-layer test tube with one bead fixed above the sample solution. Adding citric acid and heating at 70 ℃ for 20 min transformed the sulfites in the solution into SO2 gas, which then quenched the fluorescence of the CdTe QDs-AH beads. Using this assay, qualitative, naked-eye detection of SO2 residues was achieved in the concentration range of 25-300 ppm, as well as precise quantification was possible based on the difference in the average fluorescence brightness of the beads before and after the reaction. Five food types were successfully analysed using this method, which is simpler and more economical than existing methods, and does not require complex pretreatment.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Pontos Quânticos/química , Dióxido de Enxofre , Compostos de Cádmio/química , Hidrogéis , Telúrio/química , Espectrometria de Fluorescência/métodos
15.
Food Chem ; 445: 138668, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367555

RESUMO

Zilpaterol hydrochloride (zilpaterol) is used in animal feed as it can increase the lean meat mass. However, consuming zilpaterol-containing animal products may damage human health. Therefore, rapid detection of zilpaterol is attracting increasing research attention. This study aimed to developed a fast, accurate, and ultrasensitive fluorescence immunoassay based on CdTe quantum dots (QDs). A CdTe QD fluorescence sensor was synthesized from thioglycolic acid using a simple hydrothermal method. The morphology and structure of the CdTe QDs were characterized using transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy. The detection limits of our method in swine urine and pork samples were 0.5 µg/L and 1.2 µg/kg, respectively. A wide linear range of 0.1-10000 µg/L (R2 = 0.996) was achieved. Both within-run precision (CVw) and between-run precision (CVb) were ≤ 10 %. The method was then successfully applied for the analysis of zilpaterol contents in swine urine and pork samples.


Assuntos
Compostos de Cádmio , Carne de Porco , Pontos Quânticos , Carne Vermelha , Compostos de Trimetilsilil , Animais , Humanos , Suínos , Corantes Fluorescentes/química , Pontos Quânticos/química , Água , Compostos de Cádmio/química , Telúrio/química , Espectrometria de Fluorescência/métodos
16.
Int. microbiol ; 27(1): 203-212, Feb. 2024. graf
Artigo em Inglês | IBECS | ID: ibc-230254

RESUMO

Selenium (Se) and tellurium (Te) contaminations in soils and water bodies have been widely reported in recent years. Se(IV) and Te(IV) were regarded as their most dangerous forms. Microbial treatments of Se(IV)- and Te(IV)-containing wastes are promising approaches because of their environmentally friendly and sustainable advantages. However, the salt-tolerant microbial resources that can be used for selenium/tellurium pollution control are still limited since industrial wastewaters usually contain a large number of salts. In this study, a marine Shewanella sp. FDA-1 (FDA-1) was reported for efficient Se(IV) and Te(IV) reduction under saline conditions. Process and product analyses were performed to investigate the bioreduction processes of Se(IV) and Te(IV). The results showed that FDA-1 can effectively reduce Se(IV) and Te(IV) to Se0 and Te0 Se(IV)/Te(IV) to Se0/Te0 in 72 h, which were further confirmed by XRD and XPS analyses. In addition, enzymatic and RT‒qPCR assays showed that flavin-related proteins, reductases, dehydrogenases, etc., could be involved in the bioreduction of Se(IV)/Te(IV). Overall, our results demonstrate the ability of FDA-1 to reduce high concentrations of Se(IV)/or Te(IV) to Se0/or Te0 under saline conditions and thus provide efficient microbial candidate for controlling Se and Te pollution.(AU)


Assuntos
Humanos , Bactérias , Metais/toxicidade , Ácido Selenioso/metabolismo , Selênio/metabolismo , Telúrio/metabolismo , Microbiologia , Técnicas Microbiológicas , Microbiologia do Solo , Microbiologia da Água
17.
Rev. esp. med. nucl. imagen mol. (Ed. impr.) ; 43(1): 23-30, ene.- fev. 2024. ilus, tab
Artigo em Espanhol | IBECS | ID: ibc-229451

RESUMO

Objetivo Evaluar el rendimiento diagnóstico de un nuevo software de aprendizaje profundo para corrección de atenuación (SAPCA) en imágenes de perfusión miocárdica (IPM) utilizando una cámara cardiodedicada de cadmio-cinc-telurio (CZT) con correlación con angiografía coronaria (AC) para el diagnóstico de enfermedad arterial coronaria (EAC) en una población de alto riesgo. Métodos Estudio retrospectivo de 300 pacientes (196 varones [65%], edad media de 68 años) desde septiembre de 2014 hasta octubre de 2019. Posteriormente realizaron una IPM, seguida de AC dentro de los 6 meses posteriores a la IPM. La probabilidad media pretest para EAC según los criterios de la Sociedad Europea de Cardiología fue del 37%. La IPM se realizó en una cámara CZT cardio dedicada (D-SPECT® Spectrum Dynamics) usando un protocolo de 2 días, de acuerdo con las guías de la Sociedad Europea de Medicina Nuclear (EANM). La IPM fue evaluada con y sin el SAPCA. Resultados La precisión diagnóstica global de la IPM sin el SAPCA para identificar pacientes con cualquier EAC obstructiva en la AC fue del 87%, sensibilidad del 94%, especificidad del 57%, valor predictivo positivo del 91% y valor predictivo negativo del 64%. Utilizando el SAPCA, la precisión diagnóstica global fue del 90%, la sensibilidad del 91%, la especificidad del 86%, el valor predictivo positivo del 97% y el valor predictivo negativo del 66%. Conclusión El uso del novel SAPCA mejora el rendimiento diagnóstico de la IPM usando la cámara CZT D-SPECT®, especialmente reduciendo el número de resultados falsos positivos al reducir los artefactos (AU)


urpose To evaluate the diagnostic performance of a novel deep learning attenuation correction software (SAPCA) for myocardial perfusion imaging (MPI) using a cadmium-zinc-telluride (CZT) cardio dedicated camera with invasive coronary angiography (ICA) correlation for the diagnosis of coronary artery disease (CAD) in a high-risk population. Methods Retrospective study of 300 patients (196 males [65%], mean age 68 years) from September 2014 to October 2019 undergoing MPI, followed by ICA and evaluated by means of quantitative angiography software, within six months after the MPI. The mean pre-test probability score for coronary disease according to the European Society of Cardiology criteria was 37% for the whole cohort. The MPI was performed in a dedicated CZT cardio camera (D-SPECT® Spectrum Dynamics) with a two-day protocol, according to the European Association of Nuclear Medicine guidelines. MPI was retrospectively evaluated with and without the SAPCA. Results The overall diagnostic accuracy of MPI without SAPCA to identify patients with any obstructive CAD at ICA was 87%, Sensitivity 94%, Specificity 57%, positive predictive value 91% and negative predictive value 64%. Using SAPCA the overall diagnostic accuracy was 90%, sensitivity 91%, specificity 86%, positive predictive value 97% and negative predictive value 66%. Conclusion Use of the novel SAPCA enhances performance of the MPI using the CZT D-SPECT® camera and achieves improved results, especially avoiding artefacts and reducing the number of false positive results (AU)


Assuntos
Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Imagem de Perfusão do Miocárdio/métodos , Doença das Coronárias/diagnóstico por imagem , Aprendizado Profundo , Telúrio , Cádmio , Zinco , Estudos Retrospectivos , Angiografia Coronária , Software
18.
Luminescence ; 39(2): e4693, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38403841

RESUMO

The construction of SnO2 nanoparticles (NPs), specifically Te-doped SnO2 NPs, using a simple and economical co-precipitation technique has been thoroughly described in this work. NH3 served as the reducing agent in this procedure, whilst polyethylene glycol served as the capping agent. The primary goals of our work were to investigate the physicochemical properties of the synthesized SnO2 NPs and assess their potential use as antibacterial agents and photocatalysts. Scanning electron microscopy-energy dispersive X-ray, ultraviolet light, Fourier transform infrared spectroscopy, X-ray diffraction (XRD), and other analytical techniques were used to thoroughly analyze the NPs. Based on the full width at half maximum of the most noticeable peaks in the XRD spectrum, the Debye-Scherrer equation was used to calculate the crystallite sizes, which indicated the presence of a single tetragonal SnO2 phase. Particularly noteworthy was the exceptional photocatalytic activity of graphene-assisted Te-doped SnO2 NPs, achieving an impressive decomposition efficiency of up to 98% in the photo-oxidation of methylene blue. Furthermore, our investigation delved into the antibacterial attributes of the synthesized SnO2 NPs against Escherichia coli and Staphylococcus aureus, demonstrating inhibitory effects on both bacteria strains. This suggests potential applications for these NPs in various environmental and medical contexts.


Assuntos
Nanopartículas Metálicas , Azul de Metileno , Fotólise , Azul de Metileno/química , Telúrio , Nanopartículas Metálicas/química , Antibacterianos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
19.
Colloids Surf B Biointerfaces ; 235: 113774, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309154

RESUMO

This study presents the development of a sensitive and simple enhanced ratiometric fluorescence sensing platform in the consist of CdTe quantum dots (QDs), carbon dots (CDs), and hepatitis B core antibody labeled with horseradish peroxidase (HBcAb-HRP) for the visual analysis of H2O2 and glucose. The sulfur atoms in HBcAb-HRP have a strong affinity for Cd(II), which effectively enhances the fluorescence intensity of the CdTe QDs due to the generation of more radiative centers at the CdTe/Cd-SR complex. In the presence of H2O2, the Cd-S bonds are oxidized to form disulfide products and results in linear fluorescence quenching, while CDs maintain stable. Becasue glucose can be converted into H2O2 with the aid of glucose oxidase, this sensing platform can also be used for analyzing glucose. The detection limits for H2O2 and glucose are 2.9 µmol L-1 with RSD of 2.6% and 1.6 µmol L-1 with RSD of 2.4% respectively. In addition, under UV lamp irradiation, the orange-yellow CdTe QDs gradually quench with increasing H2O2 and glucose, while the blue CDs remain unchanged. A color change from orange-yellow to blue enables a visual semi-quantitative determination of H2O2 in commercial contact lens solution and glucose in human serum without any pretreatment. Thus, this CdTe QDs/CDs ratiometric sensing platform has significant potential for the rapid analysis of H2O2 and glucose in actual application.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Humanos , Peróxido de Hidrogênio/química , Pontos Quânticos/química , Glucose/química , Carbono , Compostos de Cádmio/química , Telúrio/química , Anticorpos Anti-Hepatite B , Peroxidase do Rábano Silvestre/química , Corantes Fluorescentes/química
20.
J Chromatogr A ; 1718: 464695, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38340460

RESUMO

Organotin compounds (OTCs) are widely regulated but rank among the most used organometallic compounds in various industrial sectors. They are significantly more toxic than inorganic tin compounds. At workplaces, OTCs can be released as vapors or dust particles and can be absorbed by inhalation or skin contact. Occupational exposure thus represents a great risk for the absorption of OTCs for employees. Methods for OTCs speciation in workplace air monitoring currently do not exist. This study describes the development of a separation method for eleven in Germany regulated OTCs via HPLC-ICP-MS. The method allows a near baseline separation of MMT, MBT, MOT, MPhT, DMT, DBT, DPhT, TMT, TBT, TPhT and TTMT within 22 min on a C18 column and a ternary solvent and flow rate gradient using methanol, acetonitrile, and ultrapure water + 6% (v/v) acetic acid + 0.17% (m/v) α-tropolone. Ten analytes show linearity in the working range of 10 - 100 µg OTCs/L with R² > 0.999. Due to its high volatility the analyte TTMT showed a quadratic relationship between concentration and signal intensity with R² = 0.9998. The determination of the instrumental limits resulted in detection limits between 0.14 and 0.57 µg Sn/L and limits of quantification between 0.49 and 1.97 µg Sn/L. Over the course of this study thermal instability and cross reactivity of OTC in solution became apparent. Formation of two reaction products in mixed OTCs solutions have been observed. These effects will further be examined within development of appropriate sampling and sample preparation for workplace air to provide a suitable method for the determination of OTCs at workplaces according to normative references.


Assuntos
Exposição Ocupacional , Compostos Orgânicos de Estanho , Telúrio , Humanos , Compostos Orgânicos de Estanho/análise , Cromatografia Líquida de Alta Pressão , Local de Trabalho , Exposição Ocupacional/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...